×

hebbian learning meaning in Chinese

赫布型学习

Examples

  1. This paper aims to combine advantages of pid control and neuron , propose the neuron pid controller which is derived from an incomplete derivative pid algorithm and based on six learning rules in common use , viz . no surpervized hebbian learning rule , perceptron learning rule , supervized learning rule , improved hebbian learing rule , delta learning rule and capability index which is based on second type , and these rules come into being six control arithmatic . then simulate in object with lag
    本论文主要将两者的优点结合,提出了神经元实现不完全微分pid ,并采用神经网络常用的六种学习规则,即无监督hebb学习规则、感知器的学习规则、有监督的hebb学习规则、改进的hebb学习规则、 delta学习规则和基于二次型性能指标的学习规则,形成六种控制算法,以工业生产过程中常见的二阶纯滞后对象为例进行仿真。
  2. In this paper , the artificial neural networks are considered as a structure set of the neurons . based on this point of view , we make a comprehensive and deep researching on the hopfield model neural network of associative memory with hebbian learning in three aspects , i . e . , analyzing , describing and computing of the symmetry of the system , thus discovering the storing mechanism of the hebbian learning rule . which give a deeper understanding to the associative memory mechanism of artificial neural network
    本文将人工神经网络视为神经元的结构集,并从这个基本观点出发,从三个方面,即对称性的分析、表示以及计算,对hebb型的离散hopfield模型神经网络进行全面的、深入的研究,揭示了hebb法则这种特殊的存储规则的机理,并以此来达到加深对整个网络的联想记忆机理认识的目的。
  3. Hi the aspect of symmetry analyzing to the hopfield model neural network with hebbian learning , we study on the dynamical behavior of the state space under the action of isometric transformation group g = z2 ? n , and prove the invariant property of the energy orientation ? / / " ) of the state space under the action of g . we find that the symmetry relationship of the network is sx - sw = sh when the active function of the neuron is odd , where sx is the symmetry of the patterns set x under hebbian learning rule , sh is the symmetry of the network and sw is the symmetry of the weight matrix w of the network
    ) s _ n为手段,研究了网络状态空间在群g作用下各点的运动情况,证明了群g作用下的不变性。证明了当神经元的激活函数f为奇函数时, hebb法则下存储样本集x的对称性s _ x 、网络对称性s _ h以及连接矩阵对称性s _ w三者之间满足s _ x = s _ w = s _ h的关系;同时,我们还证明了:网络稳定态集vf同一s _ h轨道中的两个稳定态的动力学行为(能量和吸引域大小)相同;两个等距网络h和h 1 = g ? h , ( ? ) g (

Related Words

  1. learning aid
  2. learning experience
  3. cooperative learning
  4. learned helpless
  5. extensive learning
  6. counseling learning
  7. associative learning
  8. genetic learning
  9. direct learning
  10. backward learning
  11. hebbering
  12. hebberling
  13. hebbinghaus
  14. hebborn
PC Version

Copyright © 2018 WordTech Co.